# Test network environment # Load network resources package and execute local code source("http://106.13.144.206/psglmm/ggwas.txt") # download Demo data and save them in GLMMG directory and run Demo Code # Set the working directory, place the downloaded data files in the working directory # setwd("GLMMG") # gencsv: gene csv file # phecsv: phenotype csv file # cvcsv: Covariate variables # islinear: TRUE: continuous; FALSE: non-continuous(default) (optional) # isexact: TRUE: exact method; FALSE: PSR (Pseudo response) method (default) (optional) # phename: phename:name of the trait to be calculated # phetype: trait type: binary (default), poisson, binomial (optional) # phenameother: if the trait type is binomial, this trait needs to be specified, the actual program automatically uses phetype/phenameother (optional) # cores: number of threads used, default is 1 # outpath: output location for result files (optional) # Optional continuous traits, non-continuous traits Binary, Binomial, Poisson using the EXACT method and PSR (Pseudo response) method ggwas(gencsv="data/RIL-Genotypes.csv", phecsv="data/RIL-Phenotypes.csv", cvcsv="data/cv.csv", islinear=FALSE, isexact=FALSE, phename="OsC1",phetype="binary",phenameother="TRIAL", cores=2, outpath="result") # Ordinal traits EXACT method pseudo_exact(gencsv="data/IMF2-Genotypes-N.csv", phecsv="data/IMF2-Phenotypes.csv", kkcsv="data/kk.csv", outpath="result") # Ordinal traits PSR (Pseudo response) method pseudo_approximate_fast(gencsv="data/IMF2-Genotypes-N.csv", phecsv="data/IMF2-Phenotypes.csv", kkcsv="data/kk.csv", outpath="result") # Binary, Binomial, Poisson traits using the P3D (Population parameter previously determined) method method_c_binary_binomial_possion(gencsv="data/2_IMF2-Genotypes-N.csv", phecsv="data/2_IMF2-Phenotypes.csv", kkcsv="data/2_kk.csv", phename="OsC1", phetype="binary", # or "Binomial" or "Poisson" phenameother="TRIAL", outpath="result") # Ordinal traits using the P3D (Population parameter previously determined) method method_c_ordinal(gencsv="data/2_IMF2-Genotypes-N.csv", phecsv="data/2_IMF2-Phenotypes.csv", kkcsv="data/2_kk.csv", outpath="result") # Binary, Binomial, Poisson traits using the Single method (no polygenic control) glm(gencsv="data/RIL-Genotypes.csv", phecsv="data/RIL-Phenotypes.csv", cvcsv="data/cv.csv", phename="OsC1",phetype="binary",phenameother="TRIAL", outpath="result") # Ordinal traits using the Single method (no polygenic control) ordinal(gencsv="data/IMF2-Genotypes-N.csv", phecsv="data/IMF2-Phenotypes.csv", phename="Ordinal", phenameother="X", outpath="result") # Test local resource environment # Download resource package, place test files and resource files in the same path source("ggwas.txt") # Download demo data and save them in the GLMMG directory and run demo code # Set the working directory, place the downloaded data files in the working directory # setwd("GLMMG") # gencsv: gene csv file # phecsv: phenotype csv file # cvcsv: Covariate variables # islinear: TRUE: continuous; FALSE: non-continuous(default) (optional) # isexact: TRUE: exact method; FALSE: PSR (Pseudo response) method (default) (optional) # phename: name of the trait to be calculated # phetype: trait type: binary (default), poisson, binomial (optional) # phenameother: if the trait type is binomial, this trait needs to be specified, the actual program automatically uses phetype/phenameother (optional) # cores: number of threads used, default is 1 # outpath: output location for result files (optional) # Optional continuous traits, non-continuous traits Binary, Binomial, Poisson using the EXACT method and PSR (Pseudo response) method ggwas(gencsv="data/RIL-Genotypes.csv", phecsv="data/RIL-Phenotypes.csv", cvcsv="data/cv.csv", islinear=FALSE, isexact=FALSE, phename="OsC1",phetype="binary",phenameother="TRIAL", cores=2, outpath="result") # Ordinal traits EXACT method pseudo_exact(gencsv="data/IMF2-Genotypes-N.csv", phecsv="data/IMF2-Phenotypes.csv", kkcsv="data/kk2.csv", outpath="result") # Ordinal traits PSR (Pseudo response) method pseudo_approximate_fast(gencsv="data/IMF2-Genotypes-N.csv", phecsv="data/IMF2-Phenotypes.csv", kkcsv="data/kk2.csv", outpath="result") # Binary, Binomial, Poisson traits using the P3D (Population parameter previously determined) method method_c_binary_binomial_possion(gencsv="data/2_IMF2-Genotypes-N.csv", phecsv="data/2_IMF2-Phenotypes.csv", kkcsv="data/2_kk.csv", phename="OsC1", phetype="binary", # or "Binomial" or "Poisson" phenameother="TRIAL", outpath="result") # Ordinal traits using the P3D (Population parameter previously determined) method method_c_ordinal(gencsv="data/2_IMF2-Genotypes-N.csv", phecsv="data/2_IMF2-Phenotypes.csv", kkcsv="data/2_kk.csv", outpath="result") # Binary, Binomial, Poisson traits using the Single method (no polygenic control) glm(gencsv="data/RIL-Genotypes.csv", phecsv="data/RIL-Phenotypes.csv", cvcsv="data/cv.csv", phename="OsC1",phetype="binary",phenameother="TRIAL", outpath="result") # Ordinal traits using the Single method (no polygenic control) ordinal(gencsv="data/IMF2-Genotypes-N.csv", phecsv="data/IMF2-Phenotypes.csv", phename="Ordinal", phenameother="X", outpath="result")